
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP010755
TITLE: Tools for Optimization and Validation of

System Architecture and Software

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Development and Operation of UAVs for
Military and Civil Applications [Developpement et

utilisation des avions sans pilote [UAV] pour des

applications civiles et militaires]

To order the complete compilation report, use: ADA390637

The component part is provided here to allow users access to individually authored sections

f proceedings, annals, symposia, ect. However, the component should be considered within

he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADPO10752 thru ADPO10763

UNCLASSIFIED

3-1

Tools for Optimization and Validation of System Architecture and Software

C. Fargeon
DGA/DSA/SPMT - Architecture des Syst~mes de Drones

2bis rue Lucien Bossoutrot
75015 Paris

Abstract: UAV systems architectures rank among the end if;
most complex ones with high safety requirements. Some end foo;
new software tools have recently emerged that are worth The problem occurs when tmp <2511 and F1 >251.
to be known. This lecture was given to advertise four of
them on the following topics : 1) Static verification of The purpose is to detect and identify the error type,
real time software, to avoid run-time errors, typically localize it precisely in the source code and depict the
what happen for Ariane V; 2) Simulation of real time error context. In that case, the sofware will issue :
architecture to optimize conception and validate the final " possible error of correctness condition : denominator
choice; 3) edition of command and control software must be non zero
with interpreted properties like on-line automatic computed range: {0 <= [expr] <= 10**10}
reprogramming ; 4) optimization under constraints for in taskl.prcval at "validate.adb" line 24, column 18 : F3
continuous and discrete processes. := F1 / tmp ;"

Having in mind that 30 to 40 % of remaining errors are
I - Static verification of real time software RTE, it is worth while using a tool that automatically

detects :
The software product that is described is developed and - concurrent access on shared data,
maintained by PolySpace Technologies, start-up from - non initialized variables,
INRIA, research institute where the research was - unreachable code,
conducted. The point of contact is Daniel Pilaud, - out-of-bound array accesses & buffer overflows,
PolySpace T., 655 av. de l'Europe, 38330 Monbonnot- - arithmetic overflows & underflows (integer, floating
St-Martin, France ; phone /fax: 00-33-476-61-52-60 / point),
54-09. - arithmetic exceptions : division by 0, square root

(<0),...
The purpose of the software is to detect run time errors The software makes an exhaustive and unambiguous
(RTE), compliance with temporal constraints (dead-lock, RTE identification through 4 classes of correctness :
live-lock), compliance with observable outputs, as well - "certain error" that are pinpointed by a red color,
as non-deterministic constructs in real time software. Its - "potential error" in orange, that have to be
technology is based on INRIA researches dating back to inspected,
1985 on static verification by abstract interpretation. It - "always correct" in green, for which the correctness
has been industrialized by PolySpace and experimented is proven,
convincingly on industrial basis: ARIANE V, - "non executable" in black for unreachable code
Atmospheric Reentry Demonstrator, satellites, railway sections.
transport, automotive... An operation causing an error is necessarily classified as

a potential or certain error.
An example of run-time error is the division by zero that
can be hidden in a procedure as follows: The principle of the checking is based on polyhedron
Procedure foo (analysis of always a super-set of the exact solution. The

RR: in Float_64 : F1: in Float_64; efficiency of the selectivity rate is increased by splitting
F2 : in Float_64 : F3 : in out Float_64) is the state space by several polyhedrons, the use of integer

tmp : Float_64 lattices,
begin
if (RR /= 0.0) then The selectivity rate is important also to save man power.

F2 := F1 / RR; For example, the safety requirements for nuclear power
here, RR may be veiy small but is not 0. plant induces to have two software specialists to verify

... the code written by a third one, the ratio is less severe in
tmp := RR**2; aeronautical industry but still one might need one
F3 := F1 / tmp; verifier for each programmer. If the tool is capable to

here, tmp may be equal to 0, or F3 may be huge. automatically classify "green" or "red" 85 % of the code,

Paper presented at the RTO AVT Course on "Development and Operation of UAVs for Military and Civil Applications",
held in Rhode-Saint-Genkse, Belgium, 13-17 September 1999, and published in RTO EN-9.

3-2

PC` TASKS.P

r~i T::•S'•:H~04t2t2 ,1402t2 . ees pattelr

-t 2 :b:: -F2o i5 •ti Te poral TeIolslon I

if Random. Random then

end if;
if RanIdom. Random then3

end if;

end PlIT;

procedure Foo(Tab: in out Tab Ti

a :integer :=0;
begin

Poypc Viewe

Inai(mrC=sz(4)); possible fajiure of correctness Tondition [non-initialized variabule) error ran~ge (14-<-I<ll

fo I in TabeRange loop I if Tab(I) > 0aa then

if T£,(I) > •ax then

•ax:=T(;

)T ICI $ I II~0 'i~o:, nti, n I r.o• ' hor 1A .20N2 2•. TA Ike: 1114

3-3

that is if the potential errors are reduced to 15 % of the SAHARA, initially meant for design, is now moving
code, then the final inspection needs much less time. towards new applications, involving validation and

potentially airworthiness certification.
The tool was currently experimented on software of 60
to 100 thousands lines of code. For example, after the If one examines the tools existing in architecture design,
crash of Ariane V, it was decided to use this tool to one will come to the conclusion that there is nothing to
scrutinize the different codes used on the rocket. Ariane create and optimize a multiple agent architecture. The
V technicians had identified the source of the crash and only field where solutions are emerging is the area of
wanted to prove that this tool was capable to detect the image processing computers. Solutions are possible in
origin of the error in order to apply it to the future this domain because the structure of the computing is
generations of codes implied in navigation and guidance very homogeneous. When agents are heterogeneous, the
pilots. During Ariane experiment, the software tool was only way to optimize the design of an architecture is to
thoroughly tested for: simulate the process allowing to achieve a solution
- control and data flow analysis: call graphs, through an iterative procedure.

identifying global data, checking initialization,
- interference analysis: finding potential shared One of the main advantages of SAHARA is to be

memory interference between conflict tasks using capable of simulating a system during design when
the Bernstein criterion, components are not well defined or incomplete. The

- scalar range analysis: inferring and checking range simulator answers this issue by offering a three layer
conditions for all discrete variables, process description : functional, structural, and

- floating-point domain analysis : computing and component level. The three levels of description are the
approximate domain for each floating-point following:
variable, checking the validity of operations. - the functional level can be used to analyze control

command of systems with no time delay that is
The second industrial experiment was brought on the when the available time between two events is
Atmospheric Reentry Demonstrator to analyze its critical always long enough to fulfill the requirements. This
software (navigation and guidance pilots) including three stage brings validation of the functional description
interacting parallel tasks and 26 thousands lines of code. according to specifications of the system.

- The structural level gives a result if you consider
To summarize the highlights of this recent tool, the infinite resources. At this stage, you can optimize
following characteristics can be listed : the options of organization according to goals and
- classifies with a very high selectivity rate (between constraints.

80 and 95 %), - The third level describes the precise logical-material
- works on the following program conditioning : system and allows to take into account the impact of

ADA 83 or C ANSI, encapsulation of non-standard time on system behavior. For example, the
constructs, availability delay of data on data links.

- the user can tune the duration of the processing from
2 hours, or a day to a week-end, The simulator tests the system according to environment

- the "red tape" consisting of listing all the potential stimulus that can be described with statistical options.
errors is automatically done by the tool.

The time devoted to verification is divided by 5 or 6 and The SAHARA simulator is based on an interpreted Petri
no error or potential one is missed. net modeling that can take into account asynchronous

event, predictable or unpredictable and stochastic events.
The elementary level of SAHARA can also be seen as a

II - Optimization of real-time architecture and production rule : If (Condition) Then (action).
validation

The data are described according to their interaction and
The second tool presented here has been designed and the way they are exchanged. For instance, a sensor
developed by Michel BARATfrom ONERA - research brings out an image but what is of interest on the
center specialized in Aeronautics and Space simulation point of view is not the pixels but
Technologies, 27, avenue de la division Leclerc, 92 322 0 the image size for its impact on communication
Chdtillon cedex, France ; phone /fax : 00 33 146 73 43 delay,
88/41 41. 0 and the image pitch for its impact on computation

effort.
The software is a simulator called "SAHARA" that
stands for Heterogeneous Architecture Simulator for The system is described using "black boxes" defined by
Agents and Active Resources. SAHARA is a simulator their :
of discrete event process that was originally created for - inputs,
the architecture design of the "pilot associate", Dassault - outputs,
Aviation Program. - context,

3-4

SAHARA Model

Rule : If condition Then action or
Interpreted Petri Net

* Initial State event = data + message

L preconditionsý Model "asynchronous
predictable

transition unpredictable
stochastic

ostoonditions

equivalent models
Automatons

final State Petri Net

ONERA

Structural Level to Logico-material Level
Up Direct Link

; ! Down Direct Link

UAV

r und'ation

0 Zratonii:

ONR
StO N E R A,

Tatc i i k _______

3-5

- and transformation. The transformation is the (outOfDelay (100
propagation of data through the function according abnormalReact 0 ((defaultNotification))))))
to inputs and context. (100 normalReact 0

((reactionNotification))))))
An example of behavior definition is given below. A
behavior can be either deterministic or random. In this example for asynchronous signal, it is specified

that the 2 signals - threat and reaction must be available
(def function threadreact within a time laps of 10 units. If the time constraint is
(inputs thread) satisfied, the "notification" of reaction is propagated. If
(outputs reaction) not, the "default" of reaction is propagated.
(body
(trigger (thread (equal $thread.level 'urgency)) The user chooses the unit of time according to his need

(100 immediateReact (thread) in terms of central processing units, data links, resources.
((reaction ((type reflexe)))))) Among resources the user can depict a human operator.

(trigger (thread (equal $thread.level 'basic))
(50 destructionThread (thread) The different applications of SAHARA have given birth

((reaction ((type destruction))))) to special functions simplifying the user's life
(50 avoidanceThread (thread) - interruptible,

((reaction ((type avoidance)))))))) - any time function (interruptible, contractual,
consultable, latency delay, quality level, context

What is specified here is • evolution).
- for a threat of urgent level the function applies a - command supervision action.

determinist behavior and propagates the reaction,
- for a threat of basic level : the function applies a At function level, one specifies

stochastic behavior: - the length of computation through an instruction
"* in 50% of the cases, the behavior of code measurement,

destroying the threat, - the size of the dynamic memory necessary,
"* in 50% of the cases, the behavior of - for data exchange, the receiver of the data and the

avoiding it. size of the information produced. This size is used
to compute the propagation delay via the data link.

One can also depict a periodic behavior like the one that
follows: At structural level, one looks for the best system

composition. For instance, so far as the memories are
(def function EOsensor concerned, they can be defined as:

(inputs EOcdt) - local,
(outputs EOframe TacticalFrame) - shared,
(body - reactived,

(trigger (EOcdt (frequency (periode 2)) - buffer (FIFO),...
(begin (EOcdt (equal At this level the simulator can compute the behavior of

$EOcdt.state 'on))) the system with theoretical resources of infinite capacity.
(end (EOcdt (equal

$EOcdt.state 'off))))) At hardware level, the logical architecture becomes real
(100 EOFrameProduct 0 with actual resources : CPUs, memories, data links,

(EOframe ((length 980)))))))) human agents. The communication channel can be
managed according to different strategies:

In this example, the Electro-Optical sensor produces - either point to point
every 2 units of time an image waiting 980 kbytes. 0 first arrived first served,

0 prioritized,
Delay and synchronized signals can also be taken into .
account as follows

- or broadcast.
(def function evaluationReact

(inputs thread reaction) SAHARA has a graphic viewer that gives life to the
(outputs reactionNotification defaultNotification) boxes and links during the simulation for a better

(body understanding of what's going on.
(trigger reaction (maxDelay 10)

(begin (thread (equal $ The simulator allows to evaluate:
thread.state 'on))) - for each CPU resources :

(end (thread (equal $ 0 its instantaneous workload,
thread.state 'off))) * its maximum load,

3-6

its average load, The code that is automatically issued fulfills the safety
requirements and is validated.

- for each data link:
"* the maximum delay of data propagation, An autonomous system is characterized by a high
"* its average propagation delay, number of functions which are difficult to modify

through hardware. All the components at low level are
- for each memory: complex and costly to develop. PROCOSA allows to

"* its potential conflict, define vehicle behaviors as the organization of control
"* its potential overflow, flow and data flow between functions and defines a

mission in terms of cooperation between behaviors.
Once these functions are set, it is easy to construct a

With all this information, the designer can reshape the decision level layer.
architecture of his system and through an iterativeprocess can optimize it. PROCOSA proceeds into programming a mission by a

hierarchical and procedural method : a plan is a partially

Today's simulator is based on: ordered set of macro actions. A macro action is a
- Work Station Sparc SUN 4 5.6, particular behavior which can be considered as a sub-
- W/WINDOWS, mission and is described as such. So, the first step
- Le-lisp and Aida (Ilog) consists in developing those general purpose macro-
- MERING 2, Actor and Object library, actions : perception, localization, motion control,

payloads...

The simulator served the following programs:
- in 1989: to model and simulate the electronic PROCOSA edits mission plan changes without

copilot of Dassault Aviation, recompilation : a mission plan refers to behaviors which
- in 1992 : to model and evaluate the UGV "DARDS" themselves refer to behaviors and to functions. Changes

architecture for Dassault Electronique, the in mission plans concern only the way behaviors are
architecture of this UGV was so safe that never a requested. Functions are never modified during a
failure occurred during 7 years of experimentation mission execution. When no function has to be modified,
and demos, changing a behavior specification is feasible by the

- in 1995 : to accomplish a feasibility study in the mission UAV operator - and not by a system specialist.
context of underwater warfare,

- Nowadays, it is currently used for MAE (Medium The hierarchical representation simplifies the mission
Attitude and Long Endurance) UAV architecture plan design as well as its graphic representation.design and validation, with the contribution of PROCOSA offers a graphic-based mission plan
Sagem and A iospatiale Matra. language, so that a human operator can easily expressThe nest step is to specify improvements of S RA in mission specifications. During mission execution, andwhen there exists a communication link from the UAVorder to enable it to become a useful tool in the process to the operator interface, the same language allows the

of airworthiness certification of UAVs.
current mission state to be displayed on the graphic
mission representation.

III - Edition of command and control software PROCOSA enables easy implementation of failure

The software presented now is called PROCOSA, recovery procedures. This is a very important issue for
acronym for the French title "Programmation et autonomous UAVs as they have to cope not only with
Conduite de Systbmes Autonomes" witch can be ordinary subsystems failures, but also with unexpected
translated into "Programming and execution monitoring conditions in the environment, which make the current
of autonomous systems ". This software tool was made- mission plan inadequate. Failure recovery procedures are
up by Claude BAROUIL from ONERA Toulouse, 2 specific behaviors planned in advance with which
avenue Edouard Belin, B.P. 4025, 31055 Toulouse behavior or function to activate when such event occurs
Cedex 4, France; phone/fax 00 33 5 62 25 25 61 / 64. in such context.

This part is laid out from a paper issued by the author of Note that a function may consist in running some plan
PROCOSA called "Advanced Real time Mission generation algorithm implemented in some compiled
Management for an AUV" edited in September 1999 for code on the on board computer. The software is based on
the NATO RESTRICTED symposium on advanced an extended Petri net formalism (there is no action in the
mission management and system integration transitions). The Petri player interprets the events
technologies for improved tactical operations. according to nets that are read at initialization.

The idea behind this tool is to allow automatic In practice, data manipulated by the player have little
reprogramming of autonomous uninhabited vehicles, chance to have compatible formats. For example, the

3-7

Behavior for plan updatingI
RoianWAIT

Plan generation EgaGCS

Plan execution

Failure detection I

Trajectory replaning Iga PO

Goals selection Lg 0 e Lp K/

reguesL dLttzi /a

S1s em. Architecture ~

3-8

data structure will be different for a picture, a vehicle limited amount of energy, and more globally to
location, or an image file name. The Petri player needs to optimize the severe cost efficiency objective,
tackle this problem. Ideally, the LISP language is
necessary that is why an interpreted lisp version has been
developed, called TINY. The key to optimization is problem formulation. ILOG

describes problems with decision variables, an objective
TINY is specified for on board applications: function and some constraints functions :
- it keeps a safe behavior in case of run-time error, 0 Decision variables represent parameters that need to
- it has an easy interface with C, be settled. They can be real variables, integer,
- it reads several entries (sockets) in parallel. logical, choices among a set of possible values, etc...
Events are calling lisp function from TINY package. 0 The objective function describes the goal. They are

of two different types : linear (leading to linear
The Petri net is in charge of the replanning behavior programming), or non-linear. This last category
which is rather simple, even for a real implementation, covers a very wide range of tradeoffs.
because the representation sticks only to the replan logic 0 Constraints functions describe logical or physical
and not to the complete algorithm, conditions that the decision variables must obey. In

constraint programming, there are not only linear or
PROCOSA has been recently interfaced with SAHARA non-linear expressions, but there can also be rule-
in such a manner that it is possible to conduct the based ones like "if A then not B".
architecture and the software design in a unique
formalism with validation properties. The current linear and mixed integer programming

algorithms are widely known but suffer limitations
PROCOSA has been experimented on various real (heavy modeling, difficulties to solve large scale
implementations : scheduling problems, limited means to guide the solution
- real time (re) plan itinerary and trajectory of an search).

underwater uninhabited vehicle called REDERMOR
to reach areas of interest along a coast ; ILOG suite based on constraints optimization combines

- real time deck landing monitoring of a rotary the power of operation research algorithms with the
aircraft. In this last case, the implementation was flexibility and modeling capabilities of expert systems.
performed on a simulator. Constraints-based system scale well into large problems

When mission experts have reliably defined behaviors, spaces and yield results much faster than other
PROCOSA is on the shelf for efficient execution techniques.
monitoring implementation.

The ILOG suite has been used in the domain of
transportation, telecommunication, manufacturing,

IV - optimization under constraints for continuous finance, defense, and energy.
and discrete processes

The fourth topic concerns optimization tools ranking Conclusion
from short term scheduling, vehicle routing and
resources dispatching to long term strategic planning. UAV systems are complex but will get more and more
The software is developed and maintained by ILOG, a so, for example one can take the case of a HALE - High
previous startup from INRIA also. ILOG, no longer a Altitude Long Endurance - UAV development.
startup, is a well-known company involved in optimal Sophisticated UAVs need to be designed and developed
aircraft routing for instance and is located at Bdtiment with the most recent software tools to master their
Orsud, 3-5 avenue Galli~ni, 94 257 Gentilly Cedex, complexity.
France; phone/fax 00 33 149 08 36 00/10.

To have UAV systems expand to new market
Since the company has recently edited a white paper on applications, especially civilian, UAVs will have to
its software suite (see annex), this paragraph will only undergo severe airworthiness certification procedures.
serve as a short introduction to the white paper. The use of those new tools should reduce drastically the

cost of these procedures.
UAV manufacturers and users will have a number of
ways to take advantage of these new optimization Usually, the cost of these tools is low, what is more
algorithms : demanding is to get into the habit to use them.
- to tackle the problem of monitoring the UAV space

allocation especially when UAVs are flying among
manned aircrafts,

- to design a UAV, especially the payload allocation
since one has to cope with small space for payloads,

3-9

6. Ho Th [LO Optimiato Sut wok

6.1. Motivations Behind the Provided Optimization Techniques

This section gives an informal presentation of the main motivations behind the techniques
implemented within the FLOG Optimization Suite.

The basic algorithms used in the ILOG OptiLization Suite rely on two simple ideas. The first is
to explicitly represent the set of values that a decision variable can take. The second is to
represent the search for a solution as a tree traversal.

The unknowns of a problem are represented as decision variables. Each decision variable in the
ILOG Opftmization Suite has a domain or a set of possible values. This domain can be infinite
or finite, discrete or continuous. Solving a problem consists of finding the "right" values of its
decision variables so that the constraints are satisfied and the objective function is minimized.
To do this, the space representing all possible assignments of the variables must be explored. It
is convenient to represent this search process in a tree diagram. The nodes represent variables
and the branches represent the possible values of these variables.

1 . "° 2 i ,,y------ ----------_ ---

Y g-

z--- *.- - -• ---e~ .-f -.- *-e -t

I 3

123

Solutions

The search space as a tree

When FLOG Solver follows a branch of a node, it assigns the value of the branch to that
variable. Solving the problem consists of finding a path from the root node down to the leaves
so that the constraints are satisfied and the objective function minimized.

x - -- -- -------- e-------
1 . 2

qY- - - ------ -• "-e--0

I .23. 1.)~
• .*

1 ..*2 "3".. 1 .2 "3". 1 ..'2 3'..
z- -/---- -- -4r - 0"-o--

,- ,.... ,....,-

Solutions

Exploring the search space

As you do not know in advance which branches will lead to a solution, you may need to
explore all the possible paths from the root node down to the leaves. However, you cannot
blindly tiry all the values in the domain of the variables, as this is totally unfeasible with real-

3-10

world problems. A problem with 10 variables and a thousand possible values for each of them
has a search space with 1,0001° possibilities. Years of computational time are required to blindly
explore this search space.

Finding a solution to a given problem is often difficult because of the problem constraints. Only
a few paths actually satisfy the problem constraints, thereby leading to a solution. One way to
overcome this difficulty is to use the problem constraints on the fly, in order to compute the
consequences of each choice made on the remaining decisions. This reduces the combinatorial
explosion of the search process. The problem constraints are, therefore, used to discover as soon
as possible whether the followed path is wrong. This dynamically reduces the search effort still
to be carried out, and obtains estimations on how far the search process is from a solution.

The ILOG Optimization Suite provides specific search algorithms that implement these
features. Each time a value is tried, ILOG Optimization Suite algorithms deduce the
consequences of this modification on the remaining variables, remove from their domains the
alternatives that become unfeasible, and thus reduce the computational effort needed to find a
solution. This process can be presented with the following diagram.

Search space

•:,:;•"Solutions
Starting point

The search procedure Constraint propagation prunes
explores the search space on-the-fly the areas that become

for a solution unfeasible

Search process

6.1.1. Domain reduction

As ILOG Solver, the core engine of' the ILOG Optimization Suite, searches for a solution, it
removes from the variable domains the values that are no longer feasible. Eliminating values
that are no longer part of a solution is called domain reduction.

When the domain of a decision variable is modified, ILOG Solver uses the constraints to
compute the consequences of this decision and remove from the domains of other variables the
values that cannot satisfy the constraints and, therefore, cannot be part of a solution. The
process of computing the consequences of the modifications and reducing the domains of the
variables is called constraint propagation.

By reducing the domains on the fly, the ILOG Optimization Suite rapidly reduces the
"combinatorial explosion" problem and avoids significant computational loads. The domain
reduction process is implemented using the following principles. When you reduce the domain
of a variable, you refine the information known about this variable. The ILOG Optimization
Suite uses this information to update the set of possible alternatives for the remaining variables.
This can be illustrated with the scheduling of maintenance activities. If you reduce the possible

3-11

starting time of an activity so that it must be performed between June 3 and 5, you can deduce
that all preceding activities must be finished by June 3 at the latest, and that all following
activities start on June 5 on the earliest

6.1.2. An example

Consider the following simple problem:

Find integer values for x, y, and, z such that

yz, x-y-1, and x-z.

The combination of all the assignments of x, y, and z is represented as a tree whose nodes
represent variables and whose branches represent the possible values of those variables. Nodes
at the same level represent the same variable.

x - - - - -- f -

. 21

1 /2:3, 1 /23\ I 3\

123

Solutions

Tree of all possible values

This tree represents the search space - the space of all possible assignments. The set of paths
from the root node to the leaves represents the combination of all possible assignments to x, y,
and z. A possible path does not necessarily satisfy the problem's constraints, and therefore may
not be a solution.

At this point, you can say that if there is a path from a root node down to the leaves that
satisfies the constraints, then it is a solution to your problem. You can now apply the principles
introduced in the previous sections.

6.1.2.1. Initial propagation

Consider first the constraint x-y=1. This constraint implies that the smallest value of x must be
one unit higher than the smallest value of y. Therefore, 1 cannot be a possible value for x and is
removed from its domain. The domain of x is now [2, 3]. Similarly, the maximal value of y must
be one unit smaller than the maximal value of x, and the domain of "y "becomes [1, 2]. The
domain of z remains unchanged since no constraints involve z at this point. You can update the
tree by pruning the branches corresponding to the removed values. You obtain the following
tree:

3-12

x- - -

2 ! 13
y-- - - .- - -- -

Solutions

Pruned tree

If you now add the second constraint, y<z, the minimal possible value for z is 2, because z must
be at least one unit higher than the minimal possible value of y. The domain of z is then
reduced to [2, 3], while the domain of y stays unchanged.

The updated tree is as follows:

2X --- ,- -
2~ 3>

z- - - - - -

Solutions

Pruned tree

When the third constraint x•z is added, we can't apply any reduction on the domains of x and
z. For now the domains of these variables remain unchanged.

The initial propagation of the constraints reduces the variable domains and prunes the search
tree. However, the variables x, y, and z still have several possible values in their domains. You
use a search procedure to explore the remaining branches in looking for a solution.

6.1.2.2. Finding a first solution

The tree search procedure will try the different values from the domain of these three variables.
Assuming that the search procedure selects the variable x to start with and follows the first
branch, when ILOG Solver follows the first branch, namely branch 2, it assigns the
corresponding value to the variable. Here, the value 2 is assigned to x.

3-13

X - --
Exploring the first J 2' 3

branch Th
y----------------------- -

1 22 1-2

Z--

Solutions

Exploring the search tree

At this point, constraints are automatically used by ILOG Solver in order to further reduce the
other variable domains, if need be. As the domain of x has changed, the constraints x-y=1 and
x~z are activated:

- The constraint x-y=1 reduces the domain of y to the value 1. 1 is therefore assigned to y, as
it is the only remaining possible value.

- The constraint x-z removes 2 from the domain of z. The variable z now has one possible
remaining value, namely 3. The value 3 is therefore assigned to z.

The 3 variables x, y, and z are all assigned and the constraints are satisfied. Therefore, the first
solution to the problem is x=2, y=l, and z=3. ILOG Solver finds this solution after making only
one choice.

X-------- ---- - -- -- -- -- -
x=2;

y=l /o

Z=3',

Solutions

The solution

6.1.2.3. Looking for other solutions

If you are looking for another solution, ILOG Solver backtracks. This means that it undoes the
last decision it made and explores another branch of the tree. In the example, that decision was
x=2. When ILOG Solver backtracks, the decision is undone, together with all its consequences.
The domains of all the variables are restored to the state they were in before the decision x=2
was made. The variable domains are now x e[2,3], y e[1, 2], and z e[2, 3], and you are once
again at the node labeled by x.

3-14

- - -',•,Exploring the Second

2 - branch

y --- a

1,2: 1/2

z A

Solutions

Backtracking and exploring the second
branch

A new branch is followed, corresponding to the decision x=3, and the constraints are
propagated once more:

- The constraint x-y=1 deduces that y must be equal to 2.

- The constraint x-z removes 3 from the domain of z leaving 2 as the last possible value. 2 is
therefore assigned to z.

- As the variables y and z have been modified, ILOG Solver activates the other constraints
involving those variables. In this case, it is the constraint y<z. As the value of z is 2, this
constraint sets the maximum of y to 1. Because y has yet to equal 2, an inconsistency is
raised and triggers a backtrack. ILOG Solver deduces that there is no possible solution
down this branch.

6.1.3. Efficiency of constraint propagation

The domain reduction process is used to reduce the search effort required to find solutions.
However, the efficiency of this process, based on simple principles, depends heavily on its
computing power and its capabilities to evaluate the global impact of decisions and to remove
unfeasible alternatives as soon as possible from the search space. For this, the ILOG
Optimization Suite integrates strong optimization algorithms. These algorithms can solve
constraints, compute the global consequences of decisions, and drive the search process toward
the targeted solutions.

6.2. The Provided Types of Variables and Constraints

ILOG Solver provides a rich set of variable types, constraint classes, search strategies and
optimization algorithms. Objects are easily used directly by developers to model and solve
resource allocation problems. The list of classes provided includes (and is not limited to) integer
variables, floating point variables, Boolean variables, set variables, =, _<, -> <, >, t -, */ , scalar

product, subset, superset, union, intersection, member, Boolean or, Boolean and, Boolean not,
Boolean If-Then, cardinality, distribute, extensively defined relations, trigonometric functions,
power, square root, logarithm, exponential, as well as meta-constraints (conjunction and
disjunction of constraints, order among constraints). You can also add new types of constraint
to ILOG Solver by deriving new C++ classes.

To help you explore the search space, ILOG Solver provides a branch-and-bound algorithm
and a backtracking search -chronological and non-chronological- together with a large
number of search strategies. ILOG Solver also provides C++ classes and functions that
implement non-deterministic programming. The latest functions can be used to implement any
specific tree search algorithm.

3-15

6.3. Searching

Domain reduction is not enough to deduce the values of all the variables of a problem. For
example, the problem under consideration may have several feasible solutions. A
complementary search procedure is used to find an explicit solution to the problem in question.

6.3.1. Available procedures

With the ILOG Optimization Suite, you can explore the search space in several ways:

- You can use Solver to explore the tree search exhaustively, find the best solution to the
problem, and prove its optimality.

- If you are looking only for a feasible solution or a set of alternative solutions to your
problem, you can also use ILOG Solver to compute such solutions.

- You can also use ILOG Solver to gradually improve or repair a solution. The improvement
process can be stopped at any time, and the best result found so far can be returned.

6.32. Searching and constraint propagation

The ILOG Optimization Suite intensively uses the constraints during a tree search to compute
and propagate the consequences of each decision made. The constraint propagation engine of
the ILOG Optimization Suite carries all constraints together during the search process. It
computes the consequences of each decision taken by the search procedure or the user, tries to
find inconsistencies as soon as possible, reduces the number of alternatives to be considered
during the search, and drastically reduces the computational effort needed to find a solution.

The exploration of a branch may lead to an inconsistency, that is, to a state where some
variables have an empty domain. In this case, no solution is possible, and ILOG Solver
automatically backtracks in order to follow another branch. Since no one knows which branch
of the tree leads to a solution, ILOG Solver explores all the branches until one of them leads to a
solution. In the example's case, the second branch of the tree does not lead to a solution. The
first solution is the unique solution to the problem.

At each new node of the search tree, the constraints are used to reduce domains of decision
variables. This domain reduction has two important consequences:

- The search strategy is improved because the set of alternatives coherent with the current
partial solutions is dynamically and automatically maintained. Thus, alternatives that are
obviously impossible are not considered.

- Inconsistencies are discovered early in the search process. As soon as a variable domain is
empty, ILOG Solver knows that no solution can be obtained from the current branch.

These consequences are powerful enough to prune very large parts of the search tree, leading
to superb performance. The search algorithm described here is implemented using the ILOG
Solver function IlcGenerate. The order in which the variables are considered can be
dynamically computed. For instance, a user can choose, as the next variable, the one that has
the least number of possible values in its domain. This ordering among the variables does not
affect the solution's validity but it can be very important for improving performance. The
following figure illustrates the architecture of the search procedure.

3-16

Select a decision 1N Selection strategy
variable Most constrainted

Continue on •variable first

success F Make a decision Assignment strategy

Reduce its domain 4 Explore branches
Dichotomy

Try first, try last

Propagate constraints
Backtrack on
.failure

Architecture of the search procedure

6.3.3. Implementing new search procedures

ILOG Solver also offers programming functions to create and explore the search tree in new
ways. The tree-search algorithm described above can be implemented by two functions: branch
and generate. Branch tries the different possible values from the domain of a variable. Generate
takes an array of variables as arguments and calls branch to try values from the domains of
those variables according to the following process:

1. As long as there are any unknown variables

2. Choose one of these variables

3. Choose a value to assign to this variable

4. Propagate the effect of that assignment; go back to step I

There is a hidden problem in this description. In general, you do not know which value in the
domain of a variable leads to a solution. Assigning a value to a constraint variable must be seen
as a guess. If after this assignment an inconsistency is detected, it must be'undone, and another
value must be tried. This backtracking improves the previous algorithm as follows:

1. As long as there are any unknown variables

2. Choose one of these variables

3. Choose a value to assign to this variable

4. Assign the chosen value to this variable and memorize in parallel so that if a
contradiction is detected afterwards, remove the tried and failed value from the variable
domain and try another value; go back to step 1.

To express these search algorithms based on this try-backtrack on failure-retry mechanism,
ILOG Solver provides goal programming.

The goals Branch and Generate can be implemented in the following pseudo-code:

ILCGOALI (Brancih, iIcIintvar, x)
,if (x.isBoundlH return 0;
ilcint a StratcgyCliocsevaiue (x);

3-17

return IlcOr (x aa Iicnd(X a,
Branch(x))1: .

ThCGOAI.1(Generate, IlclntVarArray, vars) {
int i = StratecryChooseVar (vars);
if (i. == -1) return 0;
return IlcAnd(Branch(vars[il),

Generate(varsf);)

The important property of these goals is that they can be used to implement search algorithms
other than the one used in IlcGenerate. In other words, they give the ILOG Solver user
greater control over the actual search for a solution. Thanks to this extensibility, customers can
incorporate domain-specific knowledge about the interaction among goals and constraints to
provide very effective search accelerators. In fact, any tree-search algorithm can be expressed in
ILOG Solver using goals.

6.4. About Constraint Propagation Algorithms

The constraint propagation algorithms carry out the reduction of the variable domains. The
following sections describe how algorithms are implemented and perform this domain
reduction.

Each class of constraints has its own algorithm, called the solving algorithm. An object, pointing
to the decision variables that are involved in a constraint, implements the solver algorithm for
this constraint. This algorithm removes from the domains of decision variables those values
that cannot satisfy the constraint and therefore cannot really participate in a solution. Thus,
each constraint keeps the variable domains consistent with its relation. Each constraint
maintains its arc consistency. The word arc-consistency is used to emphasize the fact that a
constraint is seen as an arc that links the variables together.

The solving algorithm of a constraint can also look ahead to the remaining possible values of
the decision variables and check whether the constraint can be verified with these values. For
example, take the constraint x = y where x is smaller than 5 and y is greater then 10. The solving
algorithm immediately deduces that x and y will never be equal, because there is no
intersection between the possible values of x and y. The ILOG Optimization Suite immediately
reports this inconsistency.

6.4.1. Activation of the Solving Algorithms

When a constraint is posted on variables, ILOG Solver stores this constraint and activates its
solving algorithm to update the domains of the variables in question. ILOG Solver also
activates the solving algorithm of this constraint each time the domain of a relevant variable is
modified. The solving algorithm then computes the consequences of this modification on the
other variables involved by the constraint. This is the basis of the constraint propagation
process described below.

3-18

Solv Consequences Domain reduction
on the other
Svariables

Consequences on other variables

6.42 Constraint propagation

When the domain of a variable is modified, ILOG Solver activates the algorithm associated
with the constraints that involves this variable. To stay arc-consistent, a constraint algorithm
may reduce the domains of some other variables. This variable may be involved in other
constraints that are then also activated for consistency. This activity is known as constraint
propagation. The constraint propagation process is repeated until all the constraints are arc-
consistent and no more information can be deduced from the modification. The constraint
propagation process makes the constraints collaborate together in order to deduce as much
information as possible from a modification of the domain of a variable. It is also one of the
most important activities that the ILOG Optimization Suite handles automatically for you.

6.4.3. Arc-consistency algorithms

Generally in constraint-based optimization, various techniques are employed to remove values.
ILOG Solver uses an extension of the AC-5 arc-consistency algorithm proposed in [DH]. The
original AC-5 algorithm only handles integer decision variables, whereas ILOG Solver also
handles set, Boolean and floating-point variables. This algorithm has been implemented very
carefully because it is at the core of ILOG Solver's performance and accuracy. For instance, the
constraints are not necessarily considered whenever the variable domain is modified. They are
propagated only under certain conditions. For example, the constraint y < z is activated only
when the maximum possible value for z or the minimal possible value for y changes. No other
reductions of the two domains would lead to additional reduction of any of the domains. For
this reason, the constraint does not need to be activated. When compared to other constraint
propagation implementations, ILOG Solver is seen to be more than 2,000 times faster [P.Lj.

6.5. Using Simplex Algorithms with ILOG Planner

6.5.1. Why simplex algorithms?

The family of simplex algorithms has proven to be very efficient in real-life applications that let
you build a linear model of your problem; that is, when the model contains mainly linear
constraints. ILOG Planner has been designed to profit from the efficiency of these algorithms in
applications in which a lot of constraints can be placed in a linear form. ILOG Planner can
significantly speed-up the ILOG Optimization Suite. This allows for addressing more efficiently
particularly big or difficult applications.

3-19

ILOG Planner includes primal, dual and network simplex algorithms, and benefits from
CPLEX algorithmic know-how.

6.52 Basic principles of ILOG Planner

ILOG Planner shares the variable and constraint objects of -LOG Solver, allowing it to benefit
from the elegant C++ syntax provided by Solver.

The way LOG Planner and ILOG Solver work together is based on the traditional branch and
bound procedures used to solve integer problems in linear programming. Basically, a linear
relaxed problem is used to provide an approximation of the optimal solution. For a
minimization (maximization) problem, this approximation provides a lower (upper) bound of
the cost function. Then, the optimal relaxed solution computed by the simplex algorithm may
be used to guide the search procedure.

6.5.3. How ILOG Planner works

ILOG Planner implements the following mechanisms. First, you notify ILOG Planner of the
linear constraints in the problem to be solved. Then, the simplex algorithm of FLOG Planner
computes the optimal solution (if any) of the problem, and sends the optimal cost value to
LOG Solver, which updates the domain of the cost variable accordingly. Finally, a search
procedure built with the search facilities of FLOG Solver may use the optimal relaxed solution
provided by ILOG Planner as an approximation of the optimal solution. Late during the search,
when the search procedure deduces or tries new bounds on a variable, ILOG Solver sends the
new bounds to ILOG Planner, which updates the relaxed solution according to this bound
modification and computes the new minimum value of this cost function.

You don't need to model your problem using only linear constraints to take advantage of ILOG
Planner. That's why ILOG Planner is particularly well suited to problems for which linear
programming techniques are not applicable but involve a lot of linear constraints.

~~~~~~~~. ..... ... .... ... .. ...... ....... ..
Simplex Cosran

Algorithms Propagation

ILOG Planner [LOG Solved

Revised simplex procedure



3-20

Constraint-based optimization and especially the ILOG Optimization Suite have been
successful implemented in very diverse projects. In this section, we analyze the current
successes of constraint-based optimization, and characterize the types of problem in which it
can be applied.

7.1. Interactive and Reactive Search Capabilities

The ability to define constraints and variables and find a solution is not enough for a lot of
practical applications. Users may need to intensively interact with the planning applications.
They would need, for example, to generate several plans, explore scenarios, run simulations
and what-if analyses, and add or relax constraints. In other applications, reactivity is a key issue.
It means that the planning applications must be able to update plans according to new data,
new constraints or new priorities.

To satisfy these requirements, the ILOG Optimization Suite provides a way to manage
constraint models. ILOG Solver provides a mechanism, the manager, which allows adding and
removing constraints, completely or partially storing the current solution, and restoring the
previously stored partial or complete solution.

Moreover, another benefit of the ILOG Solver manager is the possibility of writing advanced
optimization algorithms relying on a limited search in a subtree, iterations on local
optimization, problem decomposition, etc.

72 Programming Search Strategies

The core technology of the ILOG Optimization Suite has several benefits. The ILOG
Optimization Suite actively uses constraints and removes the unfeasible alternatives from the
variable domains on the fly. In this way, the FLOG Optimization Suite converges on solutions
much faster, systematically reducing the number of possibilities to be explored. The domains of
the variables are constantly updated during the search, providing very useful information for
refining the search strategy.

A more general advantage of the search technique used in the ILOG Optimization Suite is that
the search strategy is independent of the constraints and can be programmed. The next decision
variable to be explored is identified dynamically once all the constraints involved in the current
node have been propagated. The order in which the nodes of the search tree are explored is
therefore dynamic and programmable with the FLOG Optimization Suite.

73. Improving Solutions

With many problems, you can find an initial solution very easily. However, to find an optimal
solution and verify its optimality, you usually need long running times. For these problems,
you can easily implement a search using the ILOG Optimization Suite algorithm that generates
a preliminary solution very quickly and then gradually improves the result. This approach can
be stopped at any time, with the best result found so far returned.

7.4. Exploiting Problem Knowledge

As a user of the ILOG Optimization Suite, you can make the search itself more efficient by
exploiting knowledge about the problem. For example, the order in which the nodes are
explored in the tree may be very important. Consider the timetabling application for
mainframe operators at the Banque Bruxelles Lambert. Some parts of the year are more difficult
to schedule than others. Normally, many engineers want to take their vacations in the summer



3-21

and around Christmas. It seems reasonable, therefore, to assign the shifts corresponding to the
Christmas week first, as this is the week in which the problem is the most difficult to solve. This
kind of information is called "strategic knowledge," since it deals with the way the problem
should be solved.

Strategic knowledge is quite easy to use with the ILOG Optimization Suite. In fact, if you look
at the basic search algorithm, The ILOG Optimization Suite enables you to control the order in
which the variables are selected. This principle can be applied to dramaetically improve
performance on very complex problems.

7.5. Integration of Operations Research Algorithms

A very attractive property of the TLOG Optimization Suite is that it easily integrates specialized
algorithms for solving a given problem. In other words, constraint-based optimization is a
framework for cooperating problem-solving algorithms. Algorithms are implemented as
constraint solvers, and the custom algorithms and standard solvers communicate via the
variables.

There are several algorithms already integrated in the ILOG Optimization Suite. This section
now describes two of these algorithms: the revised simplex and the edge-finder.

7.5.1. Revised simplex for linear constraints

Linear Programming algorithms with the simplex procedure are widely used in solving linear
problems such as liquid blending and production planning. ILOG Planner complements ILOG
Solver by providing a simplex solver to handle problems that involve many linear constraints
or can be represented with linear models. ILOG Planner handles linear constraints while ILOG
Solver algorithms handle logical constraints.

ILOG Planner solves the problems that occur in the standard linear programming approaches:
integer and mixed-linear integer programming. When looking for solutions, ILOG Planner
relies on the search procedures of ILOG Solver. It benefits from all the flexibility of the ILOG
Solver functions in driving the search, implementing search strategies and solving directly
logical constraints.

7.5.2. Resource constraints for scheduling applications

For scheduling problems involving time and sequencing, the edge-finder algorithm is
implemented in the finite-capacity resource constraints of ILOG Scheduler. This algorithm is
one of the most successful operations research algorithms for rapidly updating time windows
of activities submitted to resource constraints. This innovation incorporates the efficiency of this
algorithm with the flexibility of constraint-based optimization.

7.5.3. User-defined global constraints

You can define global constraints, that is, constraints shared by a set of variables. An example of
this is a resource allocation problem such as assigning cashiers -to work areas (i.e., cash
registers) in a department store.

Two cash registers each require two people. In ILOG Solver, the model for this problem
includes two decision variables, one for each person. The possible values for these variables are
the cash registers. The only constraint in the problem is that no variable pair can be assigned the
same cash register. This is simple and intuitive.

hi some systems, this restriction might be expressed by stating a different constraint for each
variable pair. However, if n is the number of people, must you then have n2 constraints? Stated



3-22

this way, the problem model is unnecessarily complex and consumes an enormous amount of
memory and processing time. Indeed, if you have 1,000 people in a chain of stores, you would
have to create I million constraints.

An alternative provided by ILOG Solver is to use only one global constraint and share it with
all the variables. The space required by the constraint is linear with respect to n.

7.6. What About Other Techniques?

It can be argued, though, that the problems tackled by the ILOG Optimization Suite are
intractable. (They are often known to be NP-hard.) In other words, certain problems may take
an exponential amount of time to solve. Fortunately, this issue rarely occurs in practical real-
world situations.

First of all, our experience at ILOG has shown that such "intractable" problems are already
partly solved manually. Usually the solutions are not automated but the problems cannot be
represented satisfactorily with less-expressive problem solvers. Indeed, these problems require
all the expressive power of the ILOG Optimization Suite in order to be represented accurately
enough.

Those solutions that can be represented with less-expressive packages are already solved by
those packages, and consequently the solution is "good enough," although it may be improved
upon. The ILOG Optimization Suite can generate exactly the same solution using the same
imprecise problem definitions. Thus, although a purely optimal solution to the problem is not
currently needed, using the ILOG Optimization Suite still allows more maintainable code and
easier expansion to meet future needs.

Another important issue is the environment in which resource allocation systems must be
integrated. Most ILOG Optimization Suite applications are not batch applications that read
data and then produce a solution. They are decision-support applications. Indeed, they often
present an interactive graphical user interface when displaying a solution. In these
applications, users want to see the current solution and monitor the search algorithm. They
may even want to stop the search, remove or add constraints, and start the solution search
again at a given point


